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Synchronization Design of a Coupled
Phase-Locked Loop

James F. Buckwalter, Sudent Member, |EEE, Ted H. Heath, and Robert A. York, Senior Member, |EEE

Abstract—Coupled phase-locked loops (CPLLs) areintroduced
asnovel circuitsfor phased-array antennas. Successful implemen-
tation relies on characterizing the synchronization behavior of
CPLL circuits over a broad range of circuit parameters. Consid-
ering inherent time delay in the phase-locked loop demonstrates
the degradation in the pull-in and hold-in ranges, aswell ascircuit
instabilities, suggesting circuit parameter limitsin a phased-array
design. We compare the theoretical limits, in the form of analytic
equations and numerical simulations, with measurements of the
pull-in and hold-in processes of a 1.5-GHz prototype CPLL.

Index Terms—Coupled phase-locked loop (CPLL), hold-in
range, pull-in range, time delay.

|. INTRODUCTION

N investigation into alternate phased-array antenna

topologies has spurred interest in coupled phase-locked
loops (CPLLS). Phased-array antennas rely on tunable phase
relationships between neighboring antenna elements to de-
velop narrow beamwidth radiation patterns. York and Itoh
[1], Pogorzelski et al. [2], and Chang et al. [9] demonstrated
the potential for coupled oscillator circuits to generate phase
shifts tunable with oscillator natural frequency. While these
results are encouraging, optimizing the beam steering and
ensuring phase relationships between neighboring elements
compel sthe adaptation of phase-locking circuitsto the practical
implementation of coupled oscillator phased arrays.

A CPLL phased-array antenna can be constructed with oscil-
lators phase locked through afeedback network. In the simplest
case, each oscillator is locked to its nearest neighbors. While
offering phase control without the use of phase shifters, the dy-
namics of this system are essentialy nonlinear due to the syn-
chronization process. To this end, we reduce the scenario to two
CPL Lsand develop the relationship between the circuit param-
eters and synchronization. While the injection-locking featured
in[1] and[9] ispossible, the direct feedback path dominatesthe
synchronization behavior.

The pertinent design goal of a CPLL circuit is reaching and
maintaining stable locked operation. Asis generally discussed
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with conventional phase-locked loops (PLLS), the synchroniza-
tion of the oscillator depends on the pull-in range. This range
is considered as the set of frequency detuning that eventually
lead to lock. The hold-in range reflects the robustness of the
locked state. This range is the set of frequency detuning for
which the circuit remains in lock [3]. From this description, it
is clear that the hold-in range is an upper bound on the pull-in
range. In general, the pull-in characteristics are a feature of the
global stahility of the system, while the hold-in characteristics
are a feature of its local stability.

While understanding the effect of circuit parameters (such
as gain) on the hold and pull-in ranges is crucia to CPLL
design, demonstrating the influence of propagation delay on
bidirectional coupled oscillators is also of interest. This paper
demonstrates the limitation of time delay on the open loop
gain of the CPLL. As a result, the propagation delay is an
important design constraint in a practical CPLL phased-array
implementation. Research on optical PLLs has demonstrated
the tradeoff between delay, bandwidth, and gain [10], [11] in
the presence of noise. This paper studies the stability tradeoffs
of these parameters in the context of coupled oscillators.

II. CPLL MODEL

A simple physical description of a CPLL is adequate for ex-
plaining much of the observed behavior. Fig. 1 suggests the
follow system of equations for each PLL:

ol + Ui =04 (i (Fim1 — &) + (w1 — 24))
1
x1 =K, sin{¢o) sin{¢y) = QKP cos A¢

bi =w; + K,u;. D

The first equation describes a passive first-order |ow-pass filter
with pole and zero time constants 7p and 72z, respectively,
and amplification «.. The second equation describes the mixer,
which multiplies two periodic signals with a gain of K, and
produces an error signal. Other phase detectors can be consid-
ered, but our intent is to understand a simple loop model in
the presence of a propagation delay and understand the impact
on the synchronization behavior. The additional sum term is
neglected because the low-pass filter suppressesits effect on the
CPLL dynamics. Finally, the third equation is a linear model
of the voltage-controlled oscillator (VCO), characterized with
natural frequency wi and a tuning sensitivity K. The tuning
sensitivity for each oscillator is assumed to be identical, but
the natural frequencies are allowed to differ. The phase output
¢ represents the argument of the locked signal. Note that the
CPLL in Fig. 1 reducesto a PLL if the amplification of either
loop filter is set to zero.
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Fig. 1. CPLL topology.

From the set of equations in (1), the evolution of the phase
difference A¢ = ¢ — ¢ between the PLLs may be derived as
follows:

TpA#; + (1 4+ (721G + 722G2) sin Ag) A¢
—(Gl +G2) COSA(z): Aw — f(aio,a?g,j?o,j?g) (2)
where G; = 1/20,; K, K, and Aw = wy — wy.

G, is referred to as the dc open loop gain with units of ra-
dians per second, and Aw as the frequency detuning between
thetwo PLLs. At this point, let usignore the impact of external
modulation, i.e., f (xo, 2, <0, 22) = 0. Defining §; = A¢ and
& = A, (2) is cast as the following system of first-order ordi-
nary differential equations (ODES):

& =&
Tpéa =— 1+ psinéi) & + Geoséy + Aw 3
Whereu = (TZ1G1 + TZQGQ) and G = G + Gs.

The desired behavior of the CPLL is phase locking of the
constituent PLLs. Mathematically, this behavior corresponds to
solutions such that £;, £ = 0. Solving (3), equilibrium points

exist at
cos—1 —Aw
[ c
_ 0
s Seql € (7(,27().

feq = o\ 2
4

0

Thisimpliesthat, at agiven gain and frequency detuning, two
equilibrium points exist. For instance, zero frequency detuning
results in equilibrium points for +/ — 90°. However, existence
does not guarantee stahility; the observed behavior of the CPLL
will depend on the stability of the equilibrium points.

The eigenvalues of the Jacobian matrix J(z) determine
the local stability of the equilibrium and effectively define
the hold-in range. The Jacobian matrix associated with the
equilibrium points of the CPLL is determined to be

) £eq1 S (0771-)

1

1 . 1 .
——Gsinéeqn —— (14 psinéeqr)
Tp Tp

I (Ceq) = ©)

953

with eigenval ues satisfying the following quadratic equation:

1 G
A2+ = (1 + psin beqi) A+ - sineq1 = 0. (6)
P

Tp
The solutionsto (6) provide the following conclusions about the
equilibrium points of the CPLL.
* The fixed point £&.q1 € (0,7) will always be linearly
stable.
 Thefixed point {cq1 € (, 27) will always be unstable.
Behavior at 0 and = is more complicated, but, from a practical
standpoint, can beignored since, in the presence of noise, the ob-
served stability boundaries of the CPLL are reduced from those
predicted by (4).
The range of frequency detuning satisfying the stable equi-
librium point characterizes the hold-in range. The hold-in range
can be quantified from the argument in (4) as follows:

Q= 2G. (7)

Comparing this result to a conventional PLL demonstrates
that the CPLL has a hold-in range that is simply the summation
of hold-in ranges of the constituent PLLSs.

A measurement of hold-in range is useful for calculating the
open loop gain and does not require breaking the feedback loop.
To validate this measurement, the circuit must synchronize over
the entire range of phase.

Estimating the pull-in range for a CPLL is critical to ensure
phase locking. An estimate of the pull-in range for aPLL is[4]

2
o 2 [FTtE
Tp

Unfortunately, the pull-in process for a PLL or CPLL is diffi-
cult to solve for exactly since it involves a globa estimation of
the circuit behavior. Sincetrajectories of (3) are periodic, we as-
sume afirst-order relationship between the state variables

(8)

)
Dividing the two state equationsin (3) gives an expression for
the trgjectories in the phase plane as follows:
d 1
Tpé =—(1+psin&)+ — (Geosé& + Aw).  (10)
déy &
For ease of estimation, we assume the loop filter has no zero.
In that case

& =a+beoséy + esiné;.

d.c.: a =Aw
sin&; : T,ab =c

coséy ipac=—b+G

— a =Aw
B G
1+ (TpAw)2
c :&GQ. (12)
1+ (rpAw)

The maximum Aw that resultsin (9) intersecting the &; -axis
is an approximation for the boundary of the pull-in range.
Graphically, this is demonstrated in Fig. 2. Trgjectories that
cross the axis generaly result in lock. In Fig. 2, the maximum
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Fig. 2. Comparison of simulated capture trajectory (black trace) of system
described in (3) and first-order trajectory (gray trace) described in (9). The
frequency detunings that mark the boundary of these trgjectories are noted in
the graph.

capture trajectory sharply turns away from the axis. It follows
for (9) that £; must, for some a, b, and ¢, be nonnegative for
al & . At the point of contact with the axis, the first-order
relationship has a minimum. Hence, the conditions on (9) are

déy
Reducing the expressionsin (12) and substituting our values
of a, b, and ¢ from (11) into this expression, the maximum Aw
can be cal culated; the pull-in rangeis approximated astwicethis
frequency detuning as follows:

1/1+475G2—1
N B S———

P 2
2’rp

(12)

Q (13)

The limit of this expression for alarge pole time constant or
gain isidentical to (8) when the zero is removed. Additionally,
the limit of this expression as the pole time constant goes to
zero is equivalent to a PLL with no loop filter. In this case, the
pull-in range should be identical to the hold-in range [3]. In the
framework of (1), we are setting the zero and poletime constants
equal. This limit can be calculated with an expansion for the
square root as follows:

1
1+ 54(71,G)2 -1

Q = 2d.

(14)

»= Tlpiglo T 2

As expected, the pull-in range converges to the hold-in range
for small pole time constants, which is the advantage of this
expression over (8).

Since the approximation used to find this relationship
involved a first-order harmonic balance, agreement with nu-
merical results is limited. The conditions imposed in (12) are
a rough approximation to the actua pull-in range boundary,
and thisisreadily apparent from Fig. 2. Comparing Figs. 2 and
3 for the gain of 20 MHz, the actua pull-in range is 8 MHz
greater than found with (13).

60
55/ { = 10 MHz Q.-
50| no zero
45
40
35
30
25
20
15
10

Pull-in Range (MHz)

5 10 15 3% 40 45

20 25 30
Gain (MHz)

Fig. 3. Pull-in range versus gain. The dark region represents the locked state
calculated from a numerical simulation of (3). The gray lines are the analytic
expressions derived in (13) and (15) compared with the expression givenin (8).
The hold-in range is also provided for reference.

A better approximation can be reached by scaling the pole
time constant according to (15). In Fig. 3, (3) isnumericaly in-
tegrated over a range of frequency detuning and gain and the
resulting lock (unlock) is depicted with a black (white) region.
We find the agreement between the simulated mesh and the an-
alytic expression to be close over the entire range for epsilon
equal to two. This corresponds with one-half the original pole

value as follows:
4T£G2
- 1+ 5 — 1
£ Q,=2 £ .

2
€ 27'p
22

(15

Justifying this factor in the analytic result is not apparent at
thistime. One possibility is the exact boundary trajectory of the
pull-in range in Fig. 2 contains a derivative discontinuity. As
aresult, estimating the effect of the higher order terms with an
effective pol e time constant may be areasonabl e approximation.

The equations suggested in (13) and (15) are intended to pro-
vide some intuition about the effect of the circuit parameters on
the pull-in range. In a phased-array implementation, ensuring
lock with the appropriate circuit parameters may be auseful op-
erating technique.

I1l. TIME-DELAY CPLL MODEL

Time delay is an unavoidable consequence of the physical
layout of the PLL. Designing a PLL and observing oscillator
spectra similar to spurious oscillator spectra motivates consid-
ering additional nonlinearities in the model. As demonstrated
in [5] and [6], time delay can generate instabilities in a PLL
under certain gain and frequency detuning conditions. Conse-
quently, the effect of time-delay on pull-in and hold-in range
is a design constraint. The results of (7) and (15) indicate that
increasing the loop gain improves both the pull-in and hold-in
ranges. However, the following analysis demonstrates that gain
cannot be arbitrarily large.

A PLL model can be modified to incorporate a lump sum
time delay. If the time delays are asymmetric in the two loops,



BUCKWALTER et al.: SYNCHRONIZATION DESIGN OF CPLL

then separate time-delay variables must be considered. In what
follows, the delay is assumed identical in both loops and can be
transformed as a single time delay in the shared feedback path.
Under thisassumption, the CPLL dynamical equation withtime
delay is given by

TpAG () + Ad (t) + pAg (t — T)sin A (t — T)

—GceosAp(t—T)=Aw. (16)
From this second-order ODE, we want to obtain a system of
first-order ODEs similar to (3). Small time delays can be han-
dled with a Padé approximation [7]

” T a7
2

Introducing time-delayed state variables and relating them to
the variables used in (3) allows us to express the time-delay
CPLL model as a four-dimensional system of equations [6] as
follows:

& =&
Tp€2 = — &g — €y sinéz + Geos &3 + Aw

& :%(51 &) - =&

Tps :2% (€9 — &4) + &2 + péysinés — Geosés — Aw.
(18)

Asdemonstrated in Section 11, stable equilibrium points exist
at

(19)

The unstable equilibrium points areignored since they do not
contribute to the hold-in range. It is immediately evident from
(19) that we should expect the same hold-in range asgiveninthe
original model without time delay. A caveat to thisresult is that
the sum frequency mixer product isignored in (1). When this
term is included the effect of time delay on the hold-in range
depends on the order of the PLL. For the assumed second-order
loop, there is practically little effect on the hold-in range [8].

Stability of the phase-locked solutions can be determined
from the eigenvalues of the Jacobian of (18) evaluated at (19).
Previously, we found the one equilibrium point was stable for
al circuit parameter values; however, this is not the case for
the time-delay model and linear instability limits the range of
stable phase differences. The calculation of the eigenvalues is
greatly simplified by first making the transformation

G=5G+E) G=7(6-8).
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Fig. 4. Acquisition time constant versus gain for three different zero
frequencies of the system described in (18). All three situations feature a
singularity above which the CPLL no longer locks into a stable locked state.

The resulting Jacobian matrix evaluated at (19) isreadily found
to be

0 1 0 1
0 0 0 Jyg
Ted=10 1 o A (20)
0 Jio Jaz Juu
where
2
Jo4 =7
1+
i = — (1+p)
Tp
Gsin &,
a3 =— Sed
Tp
2 (14 psinéegs)
Jasmps
P
and
. VGZ — Aw?
Slnﬁqu = T

Oneeigenvalueiszero, whilethe remaining three eigenvalues
are roots of the following cubic equation:

N +adl+bA+c=0 (21)

where

a=—Jig b=Jiz—JoaJyo c=—JoaJu3

and Cardano’ s method may be used to obtain these roots. Fig. 4
displays the eigenvalue behavior of (21) as a time constant for
the decay of atrajectory to the equilibrium point. Notice time-
constant behavior in Fig. 4 is qualitatively similar for any zero
frequency. To simplify analysis, we assume there is no zero in
the CPLL. One important feature of Fig. 4 is the singularity
associated with a critical gain. Once the time constant becomes
negative, the PLL will no longer lock at constant phase. The
PLL locks instead in a limit cycle to the injected signal. The
resulting frequency instability regions are described in [5]. The
limit cycle is a periodic response with period related to circuit
parameters.
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Fig. 5. Pull-in range versus gain for the time-delay CPLL model. The two
regions correspond to a different locking behavior: the dark region represents a
stable locked state and the gray region represents locking to a periodic phase.
The values of epsilon are plotted from (15).

Finally, Fig. 4 also demonstrates that the critical gain occurs
at the lowest gain when there is no zero in the loop. As the
zero frequency approaches the pole frequency, the critical gain
increases until it reaches amaximum for azero of 20 MHz. The
critical gain decreases from this value until it reaches 70 MHz
when the pole and zero frequencies are equal.

Estimating the pull-in range of (18) is considerably more in-
volved. A reasonable analytic solution is difficult to reach. Ref-
erence [4] offers an approach using a functional minimum. For
gualitative understanding, consider numerically solving (18).
Fig. 5 providesadirect comparison with Fig. 3 to understand the
effect of time delay on pull-in range. For small gains, the graphs
are similar. Around 15 MHz, the range in Fig. 5 rolls off and,
for higher gains, the numerical simulation demonstratesthat the
pull-in range is not monotonic, but peaks at a gain of 30 MHz.

The two tones of Fig. 5 represent two different locking be-
haviors. The dark region represents locking to a steady-state
phase. The gray region represents locking to a limit cycle re-
sulting from the critical gain instability.

A few additional comments can be made about the instability
comparing the matrix elements of (20) to Figs. 4 and 5. First,
gain and frequency detuning are related. The instability occurs
at the lowest gain for zero detuning. Larger detuning effectively
decreases the gain. This is evident in Fig. 5. The gray (limit
cycle) region extends to the lowest gain for small pull-in condi-
tions (frequency detuning). Thegraphin Fig. 4 istheworst case
for instability; larger frequency detuning would shift the singu-
larities right. Second, the time constant can increase with gain
implying that pull-in can actually take longer for higher gains.

Time delay changes the expected synchronization behavior
of the CPLL and the analysis provides considerations for the
pull-in and hold-in behavior. A frequency instability that must
be avoided in a potential CPLL phased-array circuit has been
described in terms of limits on the gain.

IV. MEASUREMENT AND VERIFICATION OF CPLL BEHAVIOR

The circuit consists of a mixer, buffer, variable gain ampli-
fier (VGA), and VCO, as shown in Fig. 6. The parts are ref-
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Fig. 6. Circuit implementation for CPLL. Each board in the top figure
represents an individual PLL that is coupled to its neighbor viathe RF path and
the low-frequency feedback path.
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Fig. 7. Measured time delay in the open loop. Inset figures have a scale of
5ng/div and 5 mV/div. Thefour traces correspond to the waveform at a different
point in the loop. The largest delay results from the loop filter, while the insets
demonstrate a 6-ns propagation delay through the amplifiers and mixer.

erenced by the manufacturer and number. The buffer prevents
bias point changes on the Gilbert cell mixer circuit. The VGA
provides gain and voltage offset control, allowing variation of
gain and frequency detuning. The dominant pole of the loop is
introduced by an RC filter at the tuning input of the VCO. The
polefrequency is 10 MHz and the filter does not include a zero.
No externa modulation isintroduced in the measurement of the
hold-in and pull-in ranges (xo = z2 = 0).

The time delay results from the intrinsic transit and charging
times of the devices and layout topology. The delay is expected
to be 7 ns, comprising the total step response delay from the
specifications of the amplifiers and the delay introduced by the
signal path in the loop.

The measured time delay is approximately 6.0 ns, as seen in
Fig. 7, over therange of gain values. Thetimedelay ismeasured
by following a step response through the open loop system. The
loop is broken at the input to the VGA and a step voltage is
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Fig. 8. Measured hold-in range for a single PLL at various loop gains
referenced by the VGA control voltage.

applied to this input. The waveform at the VGA input is the
darkest line. Theincreasingly lighter-colored waveforms arethe
output of the VGA, input to the VCO, and output of the buffer.
The periodic signal apparent on the waveform at the output of
the buffer is related to the sum frequency harmonic.

Thenature of truetime delay is, however, different than phase
delay. The RC response is accounted for in the time constants of
(3) and (18). Our approach has been to include another filter in
the form of (17) to approximate the time delay. This approxi-
mate filter is quite different from the loop filter because it fea-
tures aright half-plane (RHP) zero instead of aleft half-plane
zero. RHP zeros introduce instability in the feedback asillus-
trated in the eigenvalue behavior of Fig. 4. The RHP zero oc-
curs because the Bode response of true time delay is essentially
a flat magnitude response (all-pass) over al frequencies with
alinear decrease in phase. As aresult, the effect of true time
delay isashift of thewaveformin time, as seen in the measured
waveforms, while the RC time constant changes the slope of the
waveforms.

A hold-in range measurement of the PLL cell determines the
gainsof the PLL and CPLL circuits. The PLL hold-in range can
be measured from the CPLL with one amplifier set to zero gain.
Fig. 8 illustrates the PLL hold-in range at several gain control
voltages. The VGA offers gain control voltages corresponding
to the dc loop gain in the following plots. These gain control
voltages vary from —1 to 1 V. The loop gain can be calculated
from the hold-in range with (7). Table | lists the corresponding
dc loop gain for measured PLL hold-in ranges.

Assuming aCPLL consists of two identical PLLsS, we expect
that thedcloop gain of the CPLL istwicethat of the PLL. There-
fore, the hold-in range for the CPLL should be four times the
loop gain of the PLL. For instance, Vg = 0.0 V hasaPLL
hold-in range of 30 MHz in Fig. 8. This indicates that the loop
gainis15MHz. When two identical PLLs are coupled, the loop
gain is 30 MHz and the hold-in range of the CPLL should be
60 MHz.

A. Hold-In Range

From the PLL measurements, the hold-in rangeis anticipated
in Tablel. Fig. 9 is ameasurement of the hold-in range for the
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TABLE |
GAIN AND HOLD-IN RANGES FOR VARIOUS GAIN CONTROL VOLTAGES IN THE
PLL AND CPLL CIRCUITS

Vg |Measured PLL| G1; G; Expected CPLL
Hold-in Range| G2=0 G1=G2 | Hold-in Range
(Volts) (MHz) (MHz) (MHz) (MHz)
-0.5 12 6 12 24
-0.25 22 11 22 44
0.0 30 15 30 60
0.25 41 20.5 41 82
0.5 50 25 50 100
0.75 58 29 58 116
1.0 66 33 66 132
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Fig. 9. Measured hold-in ranges of the CPLL at two different loop gains
versus the natura frequencies of the oscillators. The level face of the graph
demonstrates the locked state.

CPLL circuit. The natural frequencies are set equal (zero de-
tuning) to ensure that the oscillators are initially locked. Sub-
sequently, each natural frequency is stepped transversely away
from the zero detuning condition. The steps are intended to ap-
proximate continuous movement from zero detuning and allow
an accurate measurement of the local stability. The frequency
of an oscillator is measured at each set of natural frequencies
to generate a curve that is a three-dimensiona extension to the
hold-in range in Fig. 8.

Two values of gain are presented for comparison with Tablel.
The first measurement is made with Vg = —0.5 V. Each loop
has aloop gain of 6 MHz and the hold-in range for the CPLL
should be twice the combined gain or 24 MHz. From the upper
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graph in Fig. 9, the double-headed arrow marks the distance be-
tween the dashed lines, which reference the contour boundary of
thehold-inrange. Thearrow spacingis(1500-1467) or 33 MHz.
The geometry of the graph, however, impliesthat this spacingis
the hypotenuse of aright isoscelestriangleand the actual hold-in
range is one side of this triangle. Consequently, the measured
hold-in range is 33 MHz divided by root 2 equaling 23.3 MHz,
close to the expected value.

The second measurement is made with Vg = 0.0 V. Table |
anticipates ahold-in range of 60 MHz. The arrow spacing in the
lower graph is approximately 72 MHz. By the same method,
this value is divided by root 2 and the measured hold-in range
is 52 MHz. This measurement illustrates greater discrepancy
between the theory and measurement.

To address the difference, consider that the correspondence
between the hold-in range and the loop gain is contingent on
the full phase range. Fig. 10 is an example of the phase plane
curve corresponding to the high gain case in Fig. 9. The time
delay between the VCO signals is sampled with an 8-GS/s os-
cilloscope to give the phase difference. Theregion illustrated is
limited to the actual hold-in range.

The primary feature of the phase curve is the small range of
phase differences that are not present. The phase curve reaches
within +/ — 10 degrees of the boundary of the hold-in range,
producing ahold-inlossof 4 MHz. Thisresults, in part, fromthe
nature of the measurement. Circuit noise prevents reaching the
boundary of the hold-in range without losing lock. The hold-in
measurement requires stepping the tuning voltage of two oscil-
lators. In particular, the natural frequency is stepped by approxi-
mately 1 MHz. This step can break thelock before the boundary
is reached. The PLL measurement of Fig. 8 was less sensitive
to this effect because only one oscillator is swept.

B. Pull-In Range

The analysisfor pull-in range of the time-delay CPLL model
is limited to simulation. Agreement between Fig. 5 and the
measurement of the pull-in rangejustifiesthe time-delay model.
The measurement begins by setting a large frequency detuning
to ensure the oscillators are not initially locked. The natural
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Fig. 11. Measured pull-in ranges of the CPLL at two different loop gains
versus the natural frequencies of the oscillators.

frequencies are swept transversely toward zero detuning. The
resulting curve is qualitatively similar to the hold-in range
curve, but reduced, as is expected, since the pull-in range is
smaller than the hold-in range.

The same values of gain are presented for comparison with
Figs. 9 and 11. Asbefore, theloop gain of the CPLL is12 MHz
for Vg = —0.5 V. The expected pull-in range for the CPLL
is approximately 18 MHz from Fig. 5. From the upper graph
inFig. 10, the double-headed arrow marks the distance between
the dashed linesprovided to illustrate the boundary of the pull-in
range. Thearrow spacing is (1493-1467) or 26 MHz. Asbefore,
the actual pull-in range is scaled and this gives 26 MHz divided
by root 2 equaling 18.4 MHz, closeto the value found in the nu-
merical simulation on the time-delay CPLL model. Comparing
thisresult with Fig. 9, the pull-inrangeisabout 3/4 of thehold-in
range for this gain and pole frequency.

The second measurement ismade at Vg = 0.0 V or again
of approximately 30 MHz. Fig. 5 anticipates a pull-in range of
27 MHz. The spacing of Fig. 11 is approximately 34 MHz. By
the same method, this gives a pull-in range of 24 MHz. This
is reasonably close to the expected value. The resulting ratio
of pull-in to hold-in range is 0.4. This measurement justifies
considering the effect of time delay on the pull-in range. Fig. 5
isamore accurate picture of the pull-in behavior than Fig. 3.
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Fig.12. PLL frequency spectrafor increasing loop-gain values. The harmonic
lobes increase in power drastically between the 0.75-0.8-V measurements.

C. Time-Delay Instability

Fromthediscussionin Section I11, thecritical gainisthegain
at which astable equilibrium point becomesunstable. For higher
gain, the loop locks to a limit cycle, i.e., the phase difference
between the PLLs oscillates rather than settling to a constant
value. The manifestation of this behavior in the circuit is the
spurious harmonic content in the VCO carrier frequency.

Fig. 12 is a spectrum measurement of the PLL at several dif-
ferent gains. The CPLL is uncoupled, as done to measure the
PLL locking range, and the gain is increased to display the bi-
furcating response. For low gain, the carrier signa features the
suppressed noise floor characteristic of the PLL. Near the crit-
ical gain, two spurious harmonics appear. These harmonics are
related to the limit cycle described in Section 111. While they
are still 70 dB below the carrier, asmall increasein gain brings
these harmonicswithin 20 dB of thecarrier. At still higher gains,
the harmonic content is considerable and the power in the har-
monics is on the order of the carrier.

Weak sidelobes in the spectrain Figs. 11 and 12 may appear
below the critical gain because noise sources in the loop excite
thisharmonic response. Therefore, thecritical gainisreferenced
to apoint when the harmonic power increases drastically rather
than the initial appearance of lobes.

Fig. 12 illustrates that the critical gain occurs near Vg =
0.75 V. From Table |, the loop gain of the PLL is 29 MHz.
Referring to Fig. 4, the critical gain for aPLL without azerois
anticipated at 28 MHz. This demonstrates good agreement for
the first-order approximation of the time delay. The discussion
of time-delay instability determined that given the critical gain
for the PLL remains the same for the CPLL. This implies that
each loop contributes half as much gain so thetotal contribution
conserves the critical gain.

Fig. 13 isameasurement of critical gain for the CPLL circuit.
The critical gain occurs sightly below the Vg = 0.0 V. From
Table 1, this voltage corresponds with loop gain of 30 MHz.
As expected, the critical gain remained unchanged between the
PLL and CPLL.
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Fig. 13. CPLL frequency spectraat increasing loop-gain values. The behavior
issimilar to the PLL case, however, the loop-gain values are different reflecting
the influence of the coupled dynamics.

V. CONCLUSION

A phased-array design based on CPLL circuits motivates un-
derstanding the relationship between circuit parameters and the
synchronization process. Practical experience compels the in-
clusion of loop time delay and its effect on the hold-in and
pull-in ranges has been studied. Time delay introduces circuit
instability associated with acritical gain. While higher gain can
improve the hold-in and pull-in range, neighboring oscillators
will not maintain a stable phase relationship. A 1.5-GHz CPLL
demonstrated agreement with the hol d-in and pull-in range anal -
ysis and displayed the predicted critical gain behavior.

While the analysis and experimental circuits have been re-
duced to atwo CPLL case, the approach can be extended to
larger arraysto demonstrate a phased-array antennasystem. Ad-
ditionaly, locking to an externa reference source could com-
pensate for temperature and time drifts across an implemented
array, as demonstrated in [9].
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